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Abstract-A theory for plate bending is presented which includes thl' effects of transverse shear and
transverse direct stress. It is based on the assumptions of Reissner's theory, but, by accepting a specified
order of accuracy it is shown to be possible to fonnulate the theory for both homogeneous and saudwich
plates in terms of transverse displacement as the single unknown variable. The application of finite
difference and localized Ritz methods to the theory is brielly discussed.

NOTATION

D (= Eh
1 h) llexural rigidity of plate

12(1- I' J

Ds' D, llexural rigidities of orthotropic sandwich plate in pure bending
D) = 1',.Ds = I'qD,
Ds, torsional rigidity of sandwich plate in pure twist

E Young's modulus
h plate thickness
L length of side of plate

M" M, bending moments per unit length
Ms, twisting moment per unit length

q uniformly distributed load per unit area
Qs' Q, shear forces per unit length
S" 5, shear stilfnesses of sandwich plate

U strain energy
w transverse displacement

x, y, z orthogonal co-ordinates

A2 (~+~)z
axz ayz

A
1(::2+ ::zr
" Poisson's ratio

I's,' I'ys Poisson's ratios for orthotropic sandwich plate
as, a" a, nonnal components of stress

'1's,' '1'x,' '1'" shear components of stress
tfis' tfi, average rotations

'" Reissner stress function.

1. INTRODUCTION

The principal limitations of classical plate theory are well known, namely that no account is
taken of the deformation due to transverse shear and transverse direct stress, and that only two
conditions can be satisfied at each boundary whereas three exist.

There have been several attempts to improve classical theory within the confines of a
two-dimensional plate theory, enabling useful results to be obtained without carrying out a fully
three-dimensional analysis. The theory of Reissner[l-3] occupies a unique position amongst the
literature on this subject. This theory is formulated in terms of two variables, transverse
displacement, w, and a stress function, 1/1, for which the governing equations are of fourth order
and second order respectively. The system of equations is therefore sixth order, thus requiring
three conditions to be satisfied at each boundary, and includes the effects of transverse shear
and transverse direct stress.

Interest in the Reissner plate theory has continued and solutions in series form have been
obtained for certain rectangular plate problems-simply supported [4], simply supported on two
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opposite edges with the other edges free [4J, simply supported on two opposite edges with a
variety of conditions on the remaining edges [5], and plates supported by an elastic
foundation [6].

Series solutions are inevitably restricted to the treatment of simple geometric shapes and
certain types of boundary, and hence the range of problems for which such solutions may be
obtained is very limited. Further, they involve considerable mathematical complexity because
of the two variable formulation.

A finite element solution based directly on Reissner's theory has been formulated[7], but
with the transverse direct stress terms omitted. Transverse displacement of the rectangular
element is defined by the usual twelve term polynomial. but with five degrees of freedom at
each node, two of which account for shear deformation alone. By this means the need for the
stress function is avoiqed. although explicit expressions for the stress resultants in terms of
transverse displacement are not achieved.

So far a Reissner type theory has not been explicitly formulated in terms of the single
variable, w, although this would appear attractive from both a computational and physical
viewpoint. The purpose of this paper, therefore, is to establish the extent to which it is possible
to derive a plate bending theory based on the Reissner assumptions, including shear defor
mation and transverse direct stress, but with the governing equation and stress resultants
expressed as explicit functions of one variable, and to examine the use of numerical methods
for its solution.

2. THEORETICAL DEVELOPMENT

It will be shown that a theory including the effects of both transverse shear stress and
transverse direct stress can be derived in terms of transverse displacement as the single
variable to a specified order of accuracy. An accuracy of order O(h 2

) will be regarded as
adequate, with an error term of order O(h 4

).

Such a degree of approximation may be seen to be acceptable by considering the initial
assumptions of Reissner's theory. The distributions of stress assumed through the depth of the
plate are linear for bending stresses (J'x, (J'y and shear stress Txy, quadratic for transverse shear
stresses Tm Tyz, and cubic for transverse direct stress, (J'z. These are known to be ap
proximations at least in the case of the bending stresses, since when shear deformation is
considered the section does not remain plane but warps. The two-dimensional formulation is
preserved by working in terms of three displacements averaged through the depth of the
plate-transverse displacement, w, and rotations cPx and cPy, the averaging being carried out
from work-energy considerations.

Reissner derived the following relationships for shear and moment stress resultants for
homogeneous, isotropic plates

in which

__ aw 12(1 + p) Q
cPx - ax + 5Eh x

__ aw 12(1 + p) Q
cPy - ay + 5Eh y'

(I)

(2)

(3)

(4)

(5)

(6)

(7)



A simplified Reissner theory for plate bending

From the usual equilibrium relationship

aQx aQy
-+-=-qax ay

it follows that

Hence eqn (1) can be written as

and an expression for Qy can be found in a similar manner. Differentiating these gives

Substituting these expressions in eqn (10) yields

Similarly it can be shown that

(
a3w a3w) h2(2 - v) (a 5w a5w a5

w )- -D -+-- - D -+2--+--Qy - ay3 ax2ay 10(1- v) al ax2al ax4ay

+(terms in h4 and higher powers of h).
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(8)

(9)

(10)

(11)

(12)

Accepting that 0(h 2
) is an adequate order of accuracy, and ignoring terms in h4 and higher

powers of h from hereon, substitution of (11) and (12) into (8) gives as the governing equation
for plate deftexion

,,2 +h
2
(2-V)"3 =!I.

~w 1O(1-v)~w D (13)

Substituting eqns (11) and (12) in (6) and (7), and then the resulting expressions for t/Jx and
t/Jy into (3H5) and noting (13) gives the following relationships for bending and twisting
moments to order of accuracy 0(h 2

)

(14)

(15)

(16)
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Thus the state of deformation and the shear and moment stress resultants are defined by
eqns (lIHI6) solely in terms of transverse displacement, with an error term of order O(h 4

).

3. SOLUTION USING NUMERICAL METHODS

Solutions to this theory have been obtained using both finite differences and the localized
Ritz method.

In the finite difference approach the usual central differences of accuracy (mesh length)2 are
used. Since the governing eqn (13) is sixth order, three fictitious mesh points will be associated
with each boundary point and hence three boundary conditions must be satisfied.

The application of the localized Ritz method to classical plate bending theory has been
described by Walker [8]. In using the method with the present theory ten degrees of freedom are
required at each node, namely freedom of

The appropriate strain energy function is

U = 2~ JJJ{u}+ u/+ U/-211(UxU'y + UxU'z + UyUz) + 2(l + 1l)(7";y+ 7";,+ 7";z)} dx dy dz.

(17)

Omitting the term in u/ and rewriting in terms of stress resultants this becomes

(18)

which may then be expressed in terms of derivatives of w by substituting from eqns (11), (12)
and (l4HI6). The total potential energy is then minimized with respect to each coefficient
associated with the generalised displacements at the nodes.

4. AN ILLUSTRATIVE EXAMPLE

As an example of the results obtained using the above theory the simply supported square
plate carrying a uniformly distributed load is considered here. This case is chosen since a series
solution of Reissner's theory is also available[4], from which numerical results have been
calculated for purposes of comparison.

The central deftexion of the plate for a range of depth/span ratios is shown in Fig. 1 as a
ratio of the value given by classical bending theory. The modification in deftexion predicted by
the theory is then clearly seen in relation to that part of it which is due to bending alone.

Both solutions follow the series solution fairly accurately, but tend to overestimate the
deftexion for thick plates. At h/L = 0.3 the differences are 18 and 12% for the finite difference
and localized Ritz solutions respectively. Simpler versions of this theory have been developed
for beams, and analytical solutions have shown that both theories then yield identical results. It
is therefore believed that the differences in the results for plates arise from the numerical
analysis rather than from the approximations introduced in the simplified theory. The fact that
the difference between the two sets of numerical results is of the same order as the error
reinforces this view.

There is a clear conceptual advantage in working in terms of transverse displacement as the
single variable, as there is no physical basis for interpretation of the Reissner stress function.
Further, certain computational difficulties have been found to be associated with the stress
function when numerical methods are applied to Reissner's theory directly.
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Fig. I. Central deflexion ratio. Simply supported square plate: uniform load (I' '" 0) (wo'" 0.00406 qL4'D).
(-), Reissner-series solution. (-'-), Simplified theory-finite difference solution. (-----), Simplified

theory-localized Ritz solution.

5. APPLICATION TO SANDWICH PLATES

Shear deformation is of particular interest in sandwich plates and the simplified theory can
readily be applied to this class of problem. It is conventional for such structures to assume that
the effects of transverse direct stress are negligible. Omitting these terms, eqns (3)-(7) become,
in orthotropic form,

M =D a.px +D a.py (19)x x ax I ay

M =D a.py +D
1

a.px (20)y y ay ax

M = - D e.px +a.py) (21)xy xy ay ax

aw I
.px = - ax +5xQx (22)

aw I
.py =- ay +5yQy. (23)

The appropriate equations for stress resultants in accordance with the assumptions of the
simplified Reissner theory are obtained by the foilowing process:

(a) Substitute eqns (22) and (23) in eqns (l9)-(2l) to give Mx, My. Mxy as functions of w.
Qx.Qy.

(b) Obtain expressions Qx, Qy analogous to eqn (10) by substituting the equations for Mx•
My, Mxy from (a) into the equilibrium relationships

Q = aMx_ aM..y
x ax ay

Q = aMv _ aMxy
y ay ax



1078 P. R. S. SPEARE and K. O. KEMP

(c) follow the procedure of repeated differentiation of the equations for Qx. Qy and back
substitution as described above for isotropic homogeneous plates.

The resultigg equations are

(24)

(2S)

(26)

(27)_ (D[ +2Dxy )(Dxy + (D. +Dxy )) a
5
w

4Sx Sy axay

_ a3w a3w D/ a5w (Dy(Dt +3Dxy ) ) a5w
Qy - -Dyayr-(Dt+2Dxy) ax2ay -S; ay5 - Sy +(Dt+Dxy)(Dt+2Dxy) ax2ay3

_ (D. +2Dxy )(Dsxy + (D. +Dxy ») a:w . (28)
y Sx ax ay

The governing equation for w is then found by substituting eqns (27) and (28) in eqn (8). This

c
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Fig. 2. Central deftexion of simply supported isotropic sandwich plate subjected to uniform loading (-l.



A simplified Reissner theory for plate bending 1079

single variable formulation is in contrast to other commonly used sandwich plate theories in
terms of three variables, either w, Qx and Qy [9] or partial deftexions [10].

Figure 2 shows the central deftexion results for the simply supported square plate carrying
uniform load appropriate to an isotropic sandwich with

Dx =Dy =D

Sx = Sy =: S

/lxy = /lyx =0

for a range of values of SL2ID.
The central deftexion is seen to become very large for low values of shear stiffness, while

tending to the classical bending value of O.00406qL4ID as the shear stiffness becomes very
large.

In this case the governing equilibrium equation and the equations for stress resultants for a
given value of SID are the same as those for a homogeneous plate with the same ratio of shear
stiffness to bending stiffness. In the homogeneous case S =5Gh16, giving SID =51h 2 when
/I = O. This comparison is not valid if /1# 0 since the deftexions of the homogeneous plate are
then modified by the effects of transverse direct stress, which have been neglected in the
sandwich formulation.

6. CONCLUSIONS

By accepting a specified order of accuracy it has been demonstrated that the equations
related to plate bending including the effects of both shear and transverse displacement as the
only variable. These equations have been stated to order of accuracy O(h2

), with an error term
of order O(h4

), and it has been shown that numerical solutions can be obtained using finite
difference and localized Ritz methods.

A corresponding theory has been formulated for sandwich plates, and results obtail1ed for
one case over a practical range of ratios of shear stiffness to bending stiffness.
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